Latent group detection in functional partially linear regression models
Wu Wang,
Ying Sun and
Huixia Judy Wang
Biometrics, 2023, vol. 79, issue 1, 280-291
Abstract:
In this paper, we propose a functional partially linear regression model with latent group structures to accommodate the heterogeneous relationship between a scalar response and functional covariates. The proposed model is motivated by a salinity tolerance study of barley families, whose main objective is to detect salinity tolerant barley plants. Our model is flexible, allowing for heterogeneous functional coefficients while being efficient by pooling information within a group for estimation. We develop an algorithm in the spirit of the K‐means clustering to identify latent groups of the subjects under study. We establish the consistency of the proposed estimator, derive the convergence rate and the asymptotic distribution, and develop inference procedures. We show by simulation studies that the proposed method has higher accuracy for recovering latent groups and for estimating the functional coefficients than existing methods. The analysis of the barley data shows that the proposed method can help identify groups of barley families with different salinity tolerant abilities.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13557
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:1:p:280-291
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().