Inference in response‐adaptive clinical trials when the enrolled population varies over time
Massimiliano Russo,
Steffen Ventz,
Victoria Wang and
Lorenzo Trippa
Biometrics, 2023, vol. 79, issue 1, 381-393
Abstract:
A common assumption of data analysis in clinical trials is that the patient population, as well as treatment effects, do not vary during the course of the study. However, when trials enroll patients over several years, this hypothesis may be violated. Ignoring variations of the outcome distributions over time, under the control and experimental treatments, can lead to biased treatment effect estimates and poor control of false positive results. We propose and compare two procedures that account for possible variations of the outcome distributions over time, to correct treatment effect estimates, and to control type‐I error rates. The first procedure models trends of patient outcomes with splines. The second leverages conditional inference principles, which have been introduced to analyze randomized trials when patient prognostic profiles are unbalanced across arms. These two procedures are applicable in response‐adaptive clinical trials. We illustrate the consequences of trends in the outcome distributions in response‐adaptive designs and in platform trials, and investigate the proposed methods in the analysis of a glioblastoma study.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13582
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:1:p:381-393
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().