EconPapers    
Economics at your fingertips  
 

Elastic priors to dynamically borrow information from historical data in clinical trials

Liyun Jiang, Lei Nie and Ying Yuan

Biometrics, 2023, vol. 79, issue 1, 49-60

Abstract: Use of historical data and real‐world evidence holds great potential to improve the efficiency of clinical trials. One major challenge is to effectively borrow information from historical data while maintaining a reasonable type I error and minimal bias. We propose the elastic prior approach to address this challenge. Unlike existing approaches, this approach proactively controls the behavior of information borrowing and type I errors by incorporating a well‐known concept of clinically significant difference through an elastic function, defined as a monotonic function of a congruence measure between historical data and trial data. The elastic function is constructed to satisfy a set of prespecified criteria such that the resulting prior will strongly borrow information when historical and trial data are congruent, but refrain from information borrowing when historical and trial data are incongruent. The elastic prior approach has a desirable property of being information borrowing consistent, that is, asymptotically controls type I error at the nominal value, no matter that historical data are congruent or not to the trial data. Our simulation study that evaluates the finite sample characteristic confirms that, compared to existing methods, the elastic prior has better type I error control and yields competitive or higher power. The proposed approach is applicable to binary, continuous, and survival endpoints.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/biom.13551

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:1:p:49-60

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:49-60