A novel statistical test for treatment differences in clinical trials using a response‐adaptive forward‐looking Gittins Index Rule
Helen Yvette Barnett,
Sofía S. Villar,
Helena Geys and
Thomas Jaki
Biometrics, 2023, vol. 79, issue 1, 86-97
Abstract:
The most common objective for response‐adaptive clinical trials is to seek to ensure that patients within a trial have a high chance of receiving the best treatment available by altering the chance of allocation on the basis of accumulating data. Approaches that yield good patient benefit properties suffer from low power from a frequentist perspective when testing for a treatment difference at the end of the study due to the high imbalance in treatment allocations. In this work we develop an alternative pairwise test for treatment difference on the basis of allocation probabilities of the covariate‐adjusted response‐adaptive randomization with forward‐looking Gittins Index (CARA‐FLGI) Rule for binary responses. The performance of the novel test is evaluated in simulations for two‐armed studies and then its applications to multiarmed studies are illustrated. The proposed test has markedly improved power over the traditional Fisher exact test when this class of nonmyopic response adaptation is used. We also find that the test's power is close to the power of a Fisher exact test under equal randomization.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13581
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:1:p:86-97
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().