Nonparametric and semiparametric estimation with sequentially truncated survival data
Rebecca A. Betensky,
Jing Qian and
Jingyao Hou
Biometrics, 2023, vol. 79, issue 2, 1000-1013
Abstract:
In observational cohort studies with complex sampling schemes, truncation arises when the time to event of interest is observed only when it falls below or exceeds another random time, that is, the truncation time. In more complex settings, observation may require a particular ordering of event times; we refer to this as sequential truncation. Estimators of the event time distribution have been developed for simple left‐truncated or right‐truncated data. However, these estimators may be inconsistent under sequential truncation. We propose nonparametric and semiparametric maximum likelihood estimators for the distribution of the event time of interest in the presence of sequential truncation, under two truncation models. We show the equivalence of an inverse probability weighted estimator and a product limit estimator under one of these models. We study the large sample properties of the proposed estimators and derive their asymptotic variance estimators. We evaluate the proposed methods through simulation studies and apply the methods to an Alzheimer's disease study. We have developed an R package, seqTrun, for implementation of our method.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13678
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:2:p:1000-1013
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().