EconPapers    
Economics at your fingertips  
 

Efficient and robust methods for causally interpretable meta‐analysis: Transporting inferences from multiple randomized trials to a target population

Issa J. Dahabreh, Sarah E. Robertson, Lucia C. Petito, Miguel A. Hernán and Jon A. Steingrimsson

Biometrics, 2023, vol. 79, issue 2, 1057-1072

Abstract: We present methods for causally interpretable meta‐analyses that combine information from multiple randomized trials to draw causal inferences for a target population of substantive interest. We consider identifiability conditions, derive implications of the conditions for the law of the observed data, and obtain identification results for transporting causal inferences from a collection of independent randomized trials to a new target population in which experimental data may not be available. We propose an estimator for the potential outcome mean in the target population under each treatment studied in the trials. The estimator uses covariate, treatment, and outcome data from the collection of trials, but only covariate data from the target population sample. We show that it is doubly robust in the sense that it is consistent and asymptotically normal when at least one of the models it relies on is correctly specified. We study the finite sample properties of the estimator in simulation studies and demonstrate its implementation using data from a multicenter randomized trial.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/biom.13716

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:2:p:1057-1072

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1057-1072