Zero‐inflated Poisson models with measurement error in the response
Qihuang Zhang and
Grace Y. Yi
Biometrics, 2023, vol. 79, issue 2, 1089-1102
Abstract:
Zero‐inflated count data arise frequently from genomics studies. Analysis of such data is often based on a mixture model which facilitates excess zeros in combination with a Poisson distribution, and various inference methods have been proposed under such a model. Those analysis procedures, however, are challenged by the presence of measurement error in count responses. In this article, we propose a new measurement error model to describe error‐contaminated count data. We show that ignoring the measurement error effects in the analysis may generally lead to invalid inference results, and meanwhile, we identify situations where ignoring measurement error can still yield consistent estimators. Furthermore, we propose a Bayesian method to address the effects of measurement error under the zero‐inflated Poisson model and discuss the identifiability issues. We develop a data‐augmentation algorithm that is easy to implement. Simulation studies are conducted to evaluate the performance of the proposed method. We apply our method to analyze the data arising from a prostate adenocarcinoma genomic study.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13657
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:2:p:1089-1102
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().