EconPapers    
Economics at your fingertips  
 

Decomposition of variation of mixed variables by a latent mixed Gaussian copula model

Yutong Liu, Toni Darville, Xiaojing Zheng and Quefeng Li

Biometrics, 2023, vol. 79, issue 2, 1187-1200

Abstract: Many biomedical studies collect data of mixed types of variables from multiple groups of subjects. Some of these studies aim to find the group‐specific and the common variation among all these variables. Even though similar problems have been studied by some previous works, their methods mainly rely on the Pearson correlation, which cannot handle mixed data. To address this issue, we propose a latent mixed Gaussian copula (LMGC) model that can quantify the correlations among binary, ordinal, continuous, and truncated variables in a unified framework. We also provide a tool to decompose the variation into the group‐specific and the common variation over multiple groups via solving a regularized M‐estimation problem. We conduct extensive simulation studies to show the advantage of our proposed method over the Pearson correlation‐based methods. We also demonstrate that by jointly solving the M‐estimation problem over multiple groups, our method is better than decomposing the variation group by group. We also apply our method to a Chlamydia trachomatis genital tract infection study to demonstrate how it can be used to discover informative biomarkers that differentiate patients.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13660

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:2:p:1187-1200

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1187-1200