Instrumental variable estimation of the causal hazard ratio
Linbo Wang,
Eric Tchetgen Tchetgen,
Torben Martinussen and
Stijn Vansteelandt
Biometrics, 2023, vol. 79, issue 2, 539-550
Abstract:
Cox's proportional hazards model is one of the most popular statistical models to evaluate associations of exposure with a censored failure time outcome. When confounding factors are not fully observed, the exposure hazard ratio estimated using a Cox model is subject to unmeasured confounding bias. To address this, we propose a novel approach for the identification and estimation of the causal hazard ratio in the presence of unmeasured confounding factors. Our approach is based on a binary instrumental variable, and an additional no‐interaction assumption in a first‐stage regression of the treatment on the IV and unmeasured confounders. We propose, to the best of our knowledge, the first consistent estimator of the (population) causal hazard ratio within an instrumental variable framework. A version of our estimator admits a closed‐form representation. We derive the asymptotic distribution of our estimator and provide a consistent estimator for its asymptotic variance. Our approach is illustrated via simulation studies and a data application.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13792
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:2:p:539-550
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().