EconPapers    
Economics at your fingertips  
 

Bayesian spatiotemporal modeling on complex‐valued fMRI signals via kernel convolutions

Cheng‐Han Yu, Raquel Prado, Hernando Ombao and Daniel Rowe

Biometrics, 2023, vol. 79, issue 2, 616-628

Abstract: We propose a model‐based approach that combines Bayesian variable selection tools, a novel spatial kernel convolution structure, and autoregressive processes for detecting a subject's brain activation at the voxel level in complex‐valued functional magnetic resonance imaging (CV‐fMRI) data. A computationally efficient Markov chain Monte Carlo algorithm for posterior inference is developed by taking advantage of the dimension reduction of the kernel‐based structure. The proposed spatiotemporal model leads to more accurate posterior probability activation maps and less false positives than alternative spatial approaches based on Gaussian process models, and other complex‐valued models that do not incorporate spatial and/or temporal structure. This is illustrated in the analysis of simulated data and human task‐related CV‐fMRI data. In addition, we show that complex‐valued approaches dominate magnitude‐only approaches and that the kernel structure in our proposed model considerably improves sensitivity rates when detecting activation at the voxel level.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13631

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:2:p:616-628

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:616-628