EconPapers    
Economics at your fingertips  
 

A general framework of nonparametric feature selection in high‐dimensional data

Hang Yu, Yuanjia Wang and Donglin Zeng

Biometrics, 2023, vol. 79, issue 2, 951-963

Abstract: Nonparametric feature selection for high‐dimensional data is an important and challenging problem in the fields of statistics and machine learning. Most of the existing methods for feature selection focus on parametric or additive models which may suffer from model misspecification. In this paper, we propose a new framework to perform nonparametric feature selection for both regression and classification problems. Under this framework, we learn prediction functions through empirical risk minimization over a reproducing kernel Hilbert space. The space is generated by a novel tensor product kernel, which depends on a set of parameters that determines the importance of the features. Computationally, we minimize the empirical risk with a penalty to estimate the prediction and kernel parameters simultaneously. The solution can be obtained by iteratively solving convex optimization problems. We study the theoretical property of the kernel feature space and prove the oracle selection property and Fisher consistency of our proposed method. Finally, we demonstrate the superior performance of our approach compared to existing methods via extensive simulation studies and applications to two real studies.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13664

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:2:p:951-963

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:951-963