Joint semiparametric models for case‐cohort designs
Weibin Zhong and
Guoqing Diao
Biometrics, 2023, vol. 79, issue 3, 1959-1971
Abstract:
Two‐phase studies such as case‐cohort and nested case‐control studies are widely used cost‐effective sampling strategies. In the first phase, the observed failure/censoring time and inexpensive exposures are collected. In the second phase, a subgroup of subjects is selected for measurements of expensive exposures based on the information from the first phase. One challenging issue is how to utilize all the available information to conduct efficient regression analyses of the two‐phase study data. This paper proposes a joint semiparametric modeling of the survival outcome and the expensive exposures. Specifically, we assume a class of semiparametric transformation models and a semiparametric density ratio model for the survival outcome and the expensive exposures, respectively. The class of semiparametric transformation models includes the proportional hazards model and the proportional odds model as special cases. The density ratio model is flexible in modeling multivariate mixed‐type data. We develop efficient likelihood‐based estimation and inference procedures and establish the large sample properties of the nonparametric maximum likelihood estimators. Extensive numerical studies reveal that the proposed methods perform well under practical settings. The proposed methods also appear to be reasonably robust under various model mis‐specifications. An application to the National Wilms Tumor Study is provided.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13728
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:1959-1971
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().