Combining parametric and nonparametric models to estimate treatment effects in observational studies
Daniel Daly‐Grafstein and
Paul Gustafson
Biometrics, 2023, vol. 79, issue 3, 1986-1995
Abstract:
Performing causal inference in observational studies requires we assume confounding variables are correctly adjusted for. In settings with few discrete‐valued confounders, standard models can be employed. However, as the number of confounders increases these models become less feasible as there are fewer observations available for each unique combination of confounding variables. In this paper, we propose a new model for estimating treatment effects in observational studies that incorporates both parametric and nonparametric outcome models. By conceptually splitting the data, we can combine these models while maintaining a conjugate framework, allowing us to avoid the use of Markov chain Monte Carlo (MCMC) methods. Approximations using the central limit theorem and random sampling allow our method to be scaled to high‐dimensional confounders. Through simulation studies we show our method can be competitive with benchmark models while maintaining efficient computation, and illustrate the method on a large epidemiological health survey.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13776
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:1986-1995
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().