Double reduction estimation and equilibrium tests in natural autopolyploid populations
David Gerard
Biometrics, 2023, vol. 79, issue 3, 2143-2156
Abstract:
Many bioinformatics pipelines include tests for equilibrium. Tests for diploids are well studied and widely available, but extending these approaches to autopolyploids is hampered by the presence of double reduction, the comigration of sister chromatid segments into the same gamete during meiosis. Though a hindrance for equilibrium tests, double reduction rates are quantities of interest in their own right, as they provide insights about the meiotic behavior of autopolyploid organisms. Here, we develop procedures to (i) test for equilibrium while accounting for double reduction, and (ii) estimate the double reduction rate given equilibrium. To do so, we take two approaches: a likelihood approach, and a novel U‐statistic minimization approach that we show generalizes the classical equilibrium χ2 test in diploids. For small sample sizes and uncertain genotypes, we further develop a bootstrap procedure based on our U‐statistic to test for equilibrium. We validate our methods on both simulated and real data.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13722
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:2143-2156
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().