EconPapers    
Economics at your fingertips  
 

Mendelian randomization mixed‐scale treatment effect robust identification and estimation for causal inference

Zhonghua Liu, Ting Ye, Baoluo Sun, Mary Schooling and Eric Tchetgen Tchetgen

Biometrics, 2023, vol. 79, issue 3, 2208-2219

Abstract: Standard Mendelian randomization (MR) analysis can produce biased results if the genetic variant defining an instrumental variable (IV) is confounded and/or has a horizontal pleiotropic effect on the outcome of interest not mediated by the treatment variable. We provide novel identification conditions for the causal effect of a treatment in the presence of unmeasured confounding by leveraging a possibly invalid IV for which both the IV independence and exclusion restriction assumptions may be violated. The proposed Mendelian randomization mixed‐scale treatment effect robust identification (MR MiSTERI) approach relies on (i) an assumption that the treatment effect does not vary with the possibly invalid IV on the additive scale; (ii) that the confounding bias does not vary with the possibly invalid IV on the odds ratio scale; and (iii) that the residual variance for the outcome is heteroskedastic with respect to the possibly invalid IV. Although assumptions (i) and (ii) have, respectively, appeared in the IV literature, assumption (iii) has not; we formally establish that their conjunction can identify a causal effect even with an invalid IV. MR MiSTERI is shown to be particularly advantageous in the presence of pervasive heterogeneity of pleiotropic effects on the additive scale. We propose a simple and consistent three‐stage estimator that can be used as a preliminary estimator to a carefully constructed efficient one‐step‐update estimator. In order to incorporate multiple, possibly correlated, and weak invalid IVs, a common challenge in MR studies, we develop a MAny Weak Invalid Instruments (MR MaWII MiSTERI) approach for strengthened identification and improved estimation accuracy. Both simulation studies and UK Biobank data analysis results demonstrate the robustness of the proposed methods.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13735

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:2208-2219

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2208-2219