Estimating tree‐based dynamic treatment regimes using observational data with restricted treatment sequences
Nina Zhou,
Lu Wang and
Daniel Almirall
Biometrics, 2023, vol. 79, issue 3, 2260-2271
Abstract:
A dynamic treatment regime (DTR) is a sequence of decision rules that provide guidance on how to treat individuals based on their static and time‐varying status. Existing observational data are often used to generate hypotheses about effective DTRs. A common challenge with observational data, however, is the need for analysts to consider “restrictions” on the treatment sequences. Such restrictions may be necessary for settings where (1) one or more treatment sequences that were offered to individuals when the data were collected are no longer considered viable in practice, (2) specific treatment sequences are no longer available, or (3) the scientific focus of the analysis concerns a specific type of treatment sequences (eg, “stepped‐up” treatments). To address this challenge, we propose a restricted tree–based reinforcement learning (RT‐RL) method that searches for an interpretable DTR with the maximum expected outcome, given a (set of) user‐specified restriction(s), which specifies treatment options (at each stage) that ought not to be considered as part of the estimated tree‐based DTR. In simulations, we evaluate the performance of RT‐RL versus the standard approach of ignoring the partial data for individuals not following the (set of) restriction(s). The method is illustrated using an observational data set to estimate a two‐stage stepped‐up DTR for guiding the level of care placement for adolescents with substance use disorder.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13754
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:2260-2271
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().