A latent state space model for estimating brain dynamics from electroencephalogram (EEG) data
Qinxia Wang,
Ji Meng Loh,
Xiaofu He and
Yuanjia Wang
Biometrics, 2023, vol. 79, issue 3, 2444-2457
Abstract:
Modern neuroimaging technologies have substantially advanced the measurement of brain activity. Electroencephalogram (EEG) as a noninvasive neuroimaging technique measures changes in electrical voltage on the scalp induced by brain cortical activity. With its high temporal resolution, EEG has emerged as an increasingly useful tool to study brain connectivity. Challenges with modeling EEG signals of complex brain activity include interactions among unknown sources, low signal‐to‐noise ratio, and substantial between‐subject heterogeneity. In this work, we propose a state space model that jointly analyzes multichannel EEG signals and learns dynamics of different sources corresponding to brain cortical activity. Our model borrows strength from spatially correlated measurements and uses low‐dimensional latent states to explain all observed channels. The model can account for patient heterogeneity and quantify the effect of a subject's covariates on the latent space. The EM algorithm, Kalman filtering, and bootstrap resampling are used to fit the state space model and provide comparisons between patient diagnostic groups. We apply the developed approach to a case‐control study of alcoholism and reveal significant attenuation of brain activity in response to visual stimuli in alcoholic subjects compared to healthy controls.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13742
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:2444-2457
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().