EconPapers    
Economics at your fingertips  
 

Spatial dependence modeling of latent susceptibility and time to joint damage in psoriatic arthritis

Fangya Mao and Richard J. Cook

Biometrics, 2023, vol. 79, issue 3, 2605-2618

Abstract: Important scientific insights into chronic diseases affecting several organ systems can be gained from modeling spatial dependence of sites experiencing damage progression. We describe models and methods for studying spatial dependence of joint damage in psoriatic arthritis (PsA). Since a large number of joints may remain unaffected even among individuals with a long disease history, spatial dependence is first modeled in latent joint‐specific indicators of susceptibility. Among susceptible joints, a Gaussian copula is adopted for dependence modeling of times to damage. Likelihood and composite likelihoods are developed for settings, where individuals are under intermittent observation and progression times are subject to type K interval censoring. Two‐stage estimation procedures help mitigate the computational burden arising when a large number of processes (i.e., joints) are under consideration. Simulation studies confirm that the proposed methods provide valid inference, and an application to the motivating data from the University of Toronto Psoriatic Arthritis Clinic yields important insights which can help physicians distinguish PsA from arthritic conditions with different dependence patterns.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13770

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:2605-2618

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2605-2618