Semiparametric distributed lag quantile regression for modeling time‐dependent exposure mixtures
Yuyan Wang,
Akhgar Ghassabian,
Bo Gu,
Yelena Afanasyeva,
Yiwei Li,
Leonardo Trasande and
Mengling Liu
Biometrics, 2023, vol. 79, issue 3, 2619-2632
Abstract:
Studying time‐dependent exposure mixtures has gained increasing attentions in environmental health research. When a scalar outcome is of interest, distributed lag (DL) models have been employed to characterize the exposures effects distributed over time on the mean of final outcome. However, there is a methodological gap on investigating time‐dependent exposure mixtures with different quantiles of outcome. In this paper, we introduce semiparametric partial‐linear single‐index (PLSI) DL quantile regression, which can describe the DL effects of time‐dependent exposure mixtures on different quantiles of outcome and identify susceptible periods of exposures. We consider two time‐dependent exposure settings: discrete and functional, when exposures are measured in a small number of time points and at dense time grids, respectively. Spline techniques are used to approximate the nonparametric DL function and single‐index link function, and a profile estimation algorithm is proposed. Through extensive simulations, we demonstrate the performance and value of our proposed models and inference procedures. We further apply the proposed methods to study the effects of maternal exposures to ambient air pollutants of fine particulate and nitrogen dioxide on birth weight in New York University Children's Health and Environment Study (NYU CHES).
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13702
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:2619-2632
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().