Multiwave validation sampling for error‐prone electronic health records
Bryan E. Shepherd,
Kyunghee Han,
Tong Chen,
Aihua Bian,
Shannon Pugh,
Stephany N. Duda,
Thomas Lumley,
William J. Heerman and
Pamela A. Shaw
Biometrics, 2023, vol. 79, issue 3, 2649-2663
Abstract:
Electronic health record (EHR) data are increasingly used for biomedical research, but these data have recognized data quality challenges. Data validation is necessary to use EHR data with confidence, but limited resources typically make complete data validation impossible. Using EHR data, we illustrate prospective, multiwave, two‐phase validation sampling to estimate the association between maternal weight gain during pregnancy and the risks of her child developing obesity or asthma. The optimal validation sampling design depends on the unknown efficient influence functions of regression coefficients of interest. In the first wave of our multiwave validation design, we estimate the influence function using the unvalidated (phase 1) data to determine our validation sample; then in subsequent waves, we re‐estimate the influence function using validated (phase 2) data and update our sampling. For efficiency, estimation combines obesity and asthma sampling frames while calibrating sampling weights using generalized raking. We validated 996 of 10,335 mother‐child EHR dyads in six sampling waves. Estimated associations between childhood obesity/asthma and maternal weight gain, as well as other covariates, are compared to naïve estimates that only use unvalidated data. In some cases, estimates markedly differ, underscoring the importance of efficient validation sampling to obtain accurate estimates incorporating validated data.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13713
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:2649-2663
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().