Neural network on interval‐censored data with application to the prediction of Alzheimer's disease
Tao Sun and
Ying Ding
Biometrics, 2023, vol. 79, issue 3, 2677-2690
Abstract:
Alzheimer's disease (AD) is a progressive and polygenic disorder that affects millions of individuals each year. Given that there have been few effective treatments yet for AD, it is highly desirable to develop an accurate model to predict the full disease progression profile based on an individual's genetic characteristics for early prevention and clinical management. This work uses data composed of all four phases of the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, including 1740 individuals with 8 million genetic variants. We tackle several challenges in this data, characterized by large‐scale genetic data, interval‐censored outcome due to intermittent assessments, and left truncation in one study phase (ADNIGO). Specifically, we first develop a semiparametric transformation model on interval‐censored and left‐truncated data and estimate parameters through a sieve approach. Then we propose a computationally efficient generalized score test to identify variants associated with AD progression. Next, we implement a novel neural network on interval‐censored data (NN‐IC) to construct a prediction model using top variants identified from the genome‐wide test. Comprehensive simulation studies show that the NN‐IC outperforms several existing methods in terms of prediction accuracy. Finally, we apply the NN‐IC to the full ADNI data and successfully identify subgroups with differential progression risk profiles. Data used in the preparation of this article were obtained from the ADNI database.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13734
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:2677-2690
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().