Optimal test procedures for multiple hypotheses controlling the familywise expected loss
Willi Maurer,
Frank Bretz and
Xiaolei Xun
Biometrics, 2023, vol. 79, issue 4, 2781-2793
Abstract:
We consider the problem of testing multiple null hypotheses, where a decision to reject or retain must be made for each one and embedding incorrect decisions into a real‐life context may inflict different losses. We argue that traditional methods controlling the Type I error rate may be too restrictive in this situation and that the standard familywise error rate may not be appropriate. Using a decision‐theoretic approach, we define suitable loss functions for a given decision rule, where incorrect decisions can be treated unequally by assigning different loss values. Taking expectation with respect to the sampling distribution of the data allows us to control the familywise expected loss instead of the conventional familywise error rate. Different loss functions can be adopted, and we search for decision rules that satisfy certain optimality criteria within a broad class of decision rules for which the expected loss is bounded by a fixed threshold under any parameter configuration. We illustrate the methods with the problem of establishing efficacy of a new medicinal treatment in non‐overlapping subgroups of patients.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13907
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:2781-2793
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().