EconPapers    
Economics at your fingertips  
 

Group variable selection for the Cox model with interval‐censored failure time data

Yuxiang Wu, Hui Zhao and Jianguo Sun

Biometrics, 2023, vol. 79, issue 4, 3082-3095

Abstract: Group variable selection is often required in many areas, and for this many methods have been developed under various situations. Unlike the individual variable selection, the group variable selection can select the variables in groups, and it is more efficient to identify both important and unimportant variables or factors by taking into account the existing group structure. In this paper, we consider the situation where one only observes interval‐censored failure time data arising from the Cox model, for which there does not seem to exist an established method. More specifically, a penalized sieve maximum likelihood variable selection and estimation procedure is proposed and the oracle property of the proposed method is established. Also, an extensive simulation study is performed and suggests that the proposed approach works well in practical situations. An application of the method to a set of real data is provided.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13879

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:3082-3095

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3082-3095