EconPapers    
Economics at your fingertips  
 

A double‐robust test for high‐dimensional gene coexpression networks conditioning on clinical information

Maomao Ding, Ruosha Li, Jin Qin and Jing Ning

Biometrics, 2023, vol. 79, issue 4, 3227-3238

Abstract: It has been increasingly appealing to evaluate whether expression levels of two genes in a gene coexpression network are still dependent given samples' clinical information, in which the conditional independence test plays an essential role. For enhanced robustness regarding model assumptions, we propose a class of double‐robust tests for evaluating the dependence of bivariate outcomes after controlling for known clinical information. Although the proposed test relies on the marginal density functions of bivariate outcomes given clinical information, the test remains valid as long as one of the density functions is correctly specified. Because of the closed‐form variance formula, the proposed test procedure enjoys computational efficiency without requiring a resampling procedure or tuning parameters. We acknowledge the need to infer the conditional independence network with high‐dimensional gene expressions, and further develop a procedure for multiple testing by controlling the false discovery rate. Numerical results show that our method accurately controls both the type‐I error and false discovery rate, and it provides certain levels of robustness regarding model misspecification. We apply the method to a gastric cancer study with gene expression data to understand the associations between genes belonging to the transforming growth factor β signaling pathway given cancer‐stage information.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13890

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:3227-3238

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3227-3238