Bayesian functional data analysis over dependent regions and its application for identification of differentially methylated regions
Suvo Chatterjee,
Shrabanti Chowdhury,
Duchwan Ryu and
Sanjib Basu
Biometrics, 2023, vol. 79, issue 4, 3294-3306
Abstract:
We consider a Bayesian functional data analysis for observations measured as extremely long sequences. Splitting the sequence into several small windows with manageable lengths, the windows may not be independent especially when they are neighboring each other. We propose to utilize Bayesian smoothing splines to estimate individual functional patterns within each window and to establish transition models for parameters involved in each window to address the dependence structure between windows. The functional difference of groups of individuals at each window can be evaluated by the Bayes factor based on Markov Chain Monte Carlo samples in the analysis. In this paper, we examine the proposed method through simulation studies and apply it to identify differentially methylated genetic regions in TCGA lung adenocarcinoma data.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13902
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:3294-3306
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().