Nonlinear function‐on‐scalar regression via functional universal approximation
Ruiyan Luo and
Xin Qi
Biometrics, 2023, vol. 79, issue 4, 3319-3331
Abstract:
We consider general nonlinear function‐on‐scalar (FOS) regression models, where the functional response depends on multiple scalar predictors in a general unknown nonlinear form. Existing methods either assume specific model forms (e.g., additive models) or directly estimate the nonlinear function in a space with dimension equal to the number of scalar predictors, which can only be applied to models with a few scalar predictors. To overcome these shortcomings, motivated by the classic universal approximation theorem used in neural networks, we develop a functional universal approximation theorem which can be used to approximate general nonlinear FOS maps and can be easily adopted into the framework of functional data analysis. With this theorem and utilizing smoothness regularity, we develop a novel method to fit the general nonlinear FOS regression model and make predictions. Our new method does not make any specific assumption on the model forms, and it avoids the direct estimation of nonlinear functions in a space with dimension equal to the number of scalar predictors. By estimating a sequence of bivariate functions, our method can be applied to models with a relatively large number of scalar predictors. The good performance of the proposed method is demonstrated by empirical studies on various simulated and real datasets.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13838
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:3319-3331
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().