Conditional inference in cis‐Mendelian randomization using weak genetic factors
Ashish Patel,
Dipender Gill,
Paul Newcombe and
Stephen Burgess
Biometrics, 2023, vol. 79, issue 4, 3458-3471
Abstract:
Mendelian randomization (MR) is a widely used method to estimate the causal effect of an exposure on an outcome by using genetic variants as instrumental variables. MR analyses that use variants from only a single genetic region (cis‐MR) encoding the protein target of a drug are able to provide supporting evidence for drug target validation. This paper proposes methods for cis‐MR inference that use many correlated variants to make robust inferences even in situations, where those variants have only weak effects on the exposure. In particular, we exploit the highly structured nature of genetic correlations in single gene regions to reduce the dimension of genetic variants using factor analysis. These genetic factors are then used as instrumental variables to construct tests for the causal effect of interest. Since these factors may often be weakly associated with the exposure, size distortions of standard t‐tests can be severe. Therefore, we consider two approaches based on conditional testing. First, we extend results of commonly‐used identification‐robust tests for the setting where estimated factors are used as instruments. Second, we propose a test which appropriately adjusts for first‐stage screening of genetic factors based on their relevance. Our empirical results provide genetic evidence to validate cholesterol‐lowering drug targets aimed at preventing coronary heart disease.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13888
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:3458-3471
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().