Constructing time‐invariant dynamic surveillance rules for optimal monitoring schedules
Xinyuan Dong,
Yingye Zheng,
Daniel W. Lin,
Lisa Newcomb and
Ying‐Qi Zhao
Biometrics, 2023, vol. 79, issue 4, 3895-3906
Abstract:
Dynamic surveillance rules (DSRs) are sequential surveillance decision rules informing monitoring schedules in clinical practice, which can adapt over time according to a patient's evolving characteristics. In many clinical applications, it is desirable to identify and implement optimal time‐invariant DSRs, where the parameters indexing the decision rules are shared across different decision points. We propose a new criterion for DSRs that accounts for benefit‐cost tradeoff during the course of disease surveillance. We develop two methods to estimate the time‐invariant DSRs optimizing the proposed criterion, and establish asymptotic properties for the estimated parameters of biomarkers indexing the DSRs. The first approach estimates the optimal decision rules for each individual at every stage via regression modeling, and then estimates the time‐invariant DSRs via a classification procedure with the estimated time‐varying decision rules as the response. The second approach proceeds by optimizing a relaxation of the empirical objective, where a surrogate function is utilized to facilitate computation. Extensive simulation studies are conducted to demonstrate the superior performances of the proposed methods. The methods are further applied to the Canary Prostate Active Surveillance Study (PASS).
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13911
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:3895-3906
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().