Out‐of‐sample predictability of firm‐specific stock price crashes: A machine learning approach
Devrimi Kaya,
Doron Reichmann and
Milan Reichmann
Journal of Business Finance & Accounting, 2025, vol. 52, issue 2, 1095-1115
Abstract:
We use machine learning methods to predict firm‐specific stock price crashes and evaluate the out‐of‐sample prediction performance of various methods, compared to traditional regression approaches. Using financial and textual data from 10‐K filings, our results show that a logistic regression with financial data inputs performs reasonably well and sometimes outperforms newer classifiers such as random forests and neural networks. However, we find that a stochastic gradient boosting model systematically outperforms the logistic regression, and forecasts using suitable combinations of financial and textual data inputs yield significantly higher prediction performance. Overall, the evidence suggests that machine learning methods can help predict stock price crashes.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jbfa.12831
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jbfnac:v:52:y:2025:i:2:p:1095-1115
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-686X
Access Statistics for this article
Journal of Business Finance & Accounting is currently edited by P. F. Pope, A. W. Stark and M. Walker
More articles in Journal of Business Finance & Accounting from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().