EconPapers    
Economics at your fingertips  
 

Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach

Claudia Tebaldi and Bruno Sansó

Journal of the Royal Statistical Society Series A, 2009, vol. 172, issue 1, 83-106

Abstract: Summary. Posterior distributions for the joint projections of future temperature and precipitation trends and changes are derived by applying a Bayesian hierachical model to a rich data set of simulated climate from general circulation models. The simulations that are analysed here constitute the future projections on which the Intergovernmental Panel on Climate Change based its recent summary report on the future of our planet's climate, albeit without any sophisticated statistical handling of the data. Here we quantify the uncertainty that is represented by the variable results of the various models and their limited ability to represent the observed climate both at global and at regional scales. We do so in a Bayesian framework, by estimating posterior distributions of the climate change signals in terms of trends or differences between future and current periods, and we fully characterize the uncertain nature of a suite of other parameters, like biases, correlation terms and model‐specific precisions. Besides presenting our results in terms of posterior distributions of the climate signals, we offer as an alternative representation of the uncertainties in climate change projections the use of the posterior predictive distribution of a new model's projections. The results from our analysis can find straightforward applications in impact studies, which necessitate not only best guesses but also a full representation of the uncertainty in climate change projections. For water resource and crop models, for example, it is vital to use joint projections of temperature and precipitation to represent the characteristics of future climate best, and our statistical analysis delivers just that.

Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2008.00545.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:172:y:2009:i:1:p:83-106

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:172:y:2009:i:1:p:83-106