EconPapers    
Economics at your fingertips  
 

On future household structure

Juha Alho and Nico Keilman

Journal of the Royal Statistical Society Series A, 2010, vol. 173, issue 1, 117-143

Abstract: Summary. We develop a method for computing probabilistic household forecasts which quantifies uncertainty in the future number of households of various types in a country. A probabilistic household forecast helps policy makers, planners and other forecast users in the fields of housing, energy, social security etc. in taking appropriate decisions, because some household variables are more uncertain than others. Deterministic forecasts traditionally do not quantify uncertainty. We apply the method to data from Norway. We find that predictions of future numbers of married couples, cohabiting couples and one‐person households are more certain than those of lone parents and other private households. Our method builds on an existing method for computing probabilistic population forecasts, combining such a forecast with a random breakdown of the population according to household position (single, cohabiting, living with a spouse, living alone etc.). In this application, uncertainty in the total numbers of households of different types derives primarily from random shares, rather than uncertain future population size. A similar method could be applied to obtain probabilistic forecasts for other divisions of the population, such as household size, health or disability status, region of residence and labour market status.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2009.00605.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:173:y:2010:i:1:p:117-143

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:173:y:2010:i:1:p:117-143