EconPapers    
Economics at your fingertips  
 

Multilevel network meta‐regression for population‐adjusted treatment comparisons

David M. Phillippo, Sofia Dias, A. E. Ades, Mark Belger, Alan Brnabic, Alexander Schacht, Daniel Saure, Zbigniew Kadziola and Nicky J. Welton

Journal of the Royal Statistical Society Series A, 2020, vol. 183, issue 3, 1189-1210

Abstract: Standard network meta‐analysis (NMA) and indirect comparisons combine aggregate data from multiple studies on treatments of interest, assuming that any effect modifiers are balanced across populations. Population adjustment methods relax this assumption using individual patient data from one or more studies. However, current matching‐adjusted indirect comparison and simulated treatment comparison methods are limited to pairwise indirect comparisons and cannot predict into a specified target population. Existing meta‐regression approaches incur aggregation bias. We propose a new method extending the standard NMA framework. An individual level regression model is defined, and aggregate data are fitted by integrating over the covariate distribution to form the likelihood. Motivated by the complexity of the closed form integration, we propose a general numerical approach using quasi‐Monte‐Carlo integration. Covariate correlation structures are accounted for by using copulas. Crucially for decision making, comparisons may be provided in any target population with a given covariate distribution. We illustrate the method with a network of plaque psoriasis treatments. Estimated population‐average treatment effects are similar across study populations, as differences in the distributions of effect modifiers are small. A better fit is achieved than a random effects NMA, uncertainty is substantially reduced by explaining within‐ and between‐study variation, and estimates are more interpretable.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssa.12579

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:183:y:2020:i:3:p:1189-1210

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:183:y:2020:i:3:p:1189-1210