EconPapers    
Economics at your fingertips  
 

Causes of effects via a Bayesian model selection procedure

Fabio Corradi and Monica Musio

Journal of the Royal Statistical Society Series A, 2020, vol. 183, issue 4, 1777-1792

Abstract: In causal inference, and specifically in the causes‐of‐effects problem, one is interested in how to use statistical evidence to understand causation in an individual case, and in particular how to assess the so‐called probability of causation. The answer involves the use of potential responses, which describe what would have happened to the outcome if we had observed a different value for the exposure. However, even given the best possible statistical evidence for the association between exposure and outcome, we can typically only provide bounds for the probability of causation. Dawid and his colleagues highlighted some fundamental conditions, namely exogeneity, comparability and sufficiency, that are required to obtain such bounds from experimental data. The aim of the present paper is to provide methods to find, in specific cases, the best subsample of the reference data set to satisfy these requirements. For this, we introduce a new variable, expressing the preference whether or not to be exposed, and we set the question up as a model selection problem. The best model is selected by using the marginal probability of the responses and a suitable prior over the model space. An application in the educational field is presented.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssa.12560

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:183:y:2020:i:4:p:1777-1792

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1777-1792