A seasonal dynamic measurement model for summer learning loss
Daniel McNeish and
Denis Dumas
Journal of the Royal Statistical Society Series A, 2021, vol. 184, issue 2, 616-642
Abstract:
Research conducted in US schools shows summer learning loss in test scores. If this summer loss is not incorporated into models of student ability growth, assumptions will be violated because fall scores will be overestimated and spring scores will be underestimated, which can be particularly problematic when evaluating teacher or school effectiveness. Statistical methods for summer loss have remained relatively undeveloped and often rely on lagged‐time or piecewise models, which commonly saturate the mean structure and become reparameterizations of empirical means. Compound polynomial models have recently been introduced and simultaneously model within‐year and between‐year growth processes in test scores. However, these models operate with polynomial functions of time, which can have limited interpretative utility. In this article, we propose incorporating seasonality within the dynamic measurement modelling (DMM) framework. DMM reparametrizes non‐linear growth models to directly estimate interpretable quantities (e.g. learning capacity as an upper asymptote on growth). Borrowing from ecological models proposed for body mass of cold‐climate species, we show how DMM can incorporate seasonality to provide more interpretable parameters as well as to explicitly include summer learning loss as a parameter in the model.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssa.12634
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:184:y:2021:i:2:p:616-642
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().