EconPapers    
Economics at your fingertips  
 

Robust models in probability sampling

D. Firth and K. E. Bennett

Journal of the Royal Statistical Society Series B, 1998, vol. 60, issue 1, 3-21

Abstract: In the estimation of a population mean or total from a random sample, certain methods based on linear models are known to be automatically design consistent, regardless of how well the underlying model describes the population. A sufficient condition is identified for this type of robustness to model failure; the condition, which we call ‘internal bias calibration’, relates to the combination of a model and the method used to fit it. Included among the internally bias‐calibrated models, in addition to the aforementioned linear models, are certain canonical link generalized linear models and nonparametric regressions constructed from them by a particular style of local likelihood fitting. Other models can often be made robust by using a suboptimal fitting method. Thus the class of model‐based, but design consistent, analyses is enlarged to include more realistic models for certain types of survey variable such as binary indicators and counts. Particular applications discussed are the estimation of the size of a population subdomain, as arises in tax auditing for example, and the estimation of a bootstrap tail probability.

Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00105

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:60:y:1998:i:1:p:3-21

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:3-21