Bandwidth selection for local linear regression smoothers
Nicolas W. Hengartner,
Marten H. Wegkamp and
Eric Matzner‐Løber
Journal of the Royal Statistical Society Series B, 2002, vol. 64, issue 4, 791-804
Abstract:
Summary. The paper presents a general strategy for selecting the bandwidth of nonparametric regression estimators and specializes it to local linear regression smoothers. The procedure requires the sample to be divided into a training sample and a testing sample. Using the training sample we first compute a family of regression smoothers indexed by their bandwidths. Next we select the bandwidth by minimizing the empirical quadratic prediction error on the testing sample. The resulting bandwidth satisfies a finite sample oracle inequality which holds for all bounded regression functions. This permits asymptotically optimal estimation for nearly any regression function. The practical performance of the method is illustrated by a simulation study which shows good finite sample behaviour of our method compared with other bandwidth selection procedures.
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00361
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:64:y:2002:i:4:p:791-804
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().