Bivariate location–scale models for regression analysis, with applications to lifetime data
Wenqing He and
Jerald F. Lawless
Journal of the Royal Statistical Society Series B, 2005, vol. 67, issue 1, 63-78
Abstract:
Summary. The literature on multivariate linear regression includes multivariate normal models, models that are used in survival analysis and a variety of models that are used in other areas such as econometrics. The paper considers the class of location–scale models, which includes a large proportion of the preceding models. It is shown that, for complete data, the maximum likelihood estimators for regression coefficients in a linear location–scale framework are consistent even when the joint distribution is misspecified. In addition, gains in efficiency arising from the use of a bivariate model, as opposed to separate univariate models, are studied. A major area of application for multivariate regression models is to clustered, ‘parallel’ lifetime data, so we also study the case of censored responses. Estimators of regression coefficients are no longer consistent under model misspecification, but we give simulation results that show that the bias is small in many practical situations. Gains in efficiency from bivariate models are also examined in the censored data setting. The methodology in the paper is illustrated by using lifetime data from the Diabetic Retinopathy Study.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2005.00488.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:67:y:2005:i:1:p:63-78
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().