Robust testing in generalized linear models by sign flipping score contributions
Jesse Hemerik,
Jelle J. Goeman and
Livio Finos
Journal of the Royal Statistical Society Series B, 2020, vol. 82, issue 3, 841-864
Abstract:
Generalized linear models are often misspecified because of overdispersion, heteroscedasticity and ignored nuisance variables. Existing quasi‐likelihood methods for testing in misspecified models often do not provide satisfactory type I error rate control. We provide a novel semiparametric test, based on sign flipping individual score contributions. The parameter tested is allowed to be multi‐dimensional and even high dimensional. Our test is often robust against the mentioned forms of misspecification and provides better type I error control than its competitors. When nuisance parameters are estimated, our basic test becomes conservative. We show how to take nuisance estimation into account to obtain an asymptotically exact test. Our proposed test is asymptotically equivalent to its parametric counterpart.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/rssb.12369
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:82:y:2020:i:3:p:841-864
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().