Selective inference for effect modification via the lasso
Qingyuan Zhao,
Dylan S. Small and
Ashkan Ertefaie
Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 2, 382-413
Abstract:
Effect modification occurs when the effect of the treatment on an outcome varies according to the level of other covariates and often has important implications in decision‐making. When there are tens or hundreds of covariates, it becomes necessary to use the observed data to select a simpler model for effect modification and then make valid statistical inference. We propose a two‐stage procedure to solve this problem. First, we use Robinson's transformation to decouple the nuisance parameters from the treatment effect of interest and use machine learning algorithms to estimate the nuisance parameters. Next, after plugging in the estimates of the nuisance parameters, we use the lasso to choose a low‐complexity model for effect modification. Compared to a full model consisting of all the covariates, the selected model is much more interpretable. Compared to the univariate subgroup analyses, the selected model greatly reduces the number of false discoveries. We show that the conditional selective inference for the selected model is asymptotically valid given the rate assumptions in classical semiparametric regression. Extensive simulation studies are conducted to verify the asymptotic results and an epidemiological application is used to demonstrate the method.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/rssb.12483
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:2:p:382-413
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().