EconPapers    
Economics at your fingertips  
 

Graphical criteria for efficient total effect estimation via adjustment in causal linear models

Leonard Henckel, Emilija Perković and Marloes H. Maathuis

Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 2, 579-599

Abstract: Covariate adjustment is a commonly used method for total causal effect estimation. In recent years, graphical criteria have been developed to identify all valid adjustment sets, that is, all covariate sets that can be used for this purpose. Different valid adjustment sets typically provide total causal effect estimates of varying accuracies. Restricting ourselves to causal linear models, we introduce a graphical criterion to compare the asymptotic variances provided by certain valid adjustment sets. We employ this result to develop two further graphical tools. First, we introduce a simple variance decreasing pruning procedure for any given valid adjustment set. Second, we give a graphical characterization of a valid adjustment set that provides the optimal asymptotic variance among all valid adjustment sets. Our results depend only on the graphical structure and not on the specific error variances or edge coefficients of the underlying causal linear model. They can be applied to directed acyclic graphs (DAGs), completed partially directed acyclic graphs (CPDAGs) and maximally oriented partially directed acyclic graphs (maximal PDAGs). We present simulations and a real data example to support our results and show their practical applicability.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/rssb.12451

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:2:p:579-599

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:84:y:2022:i:2:p:579-599