EconPapers    
Economics at your fingertips  
 

Statistical inference of the value function for reinforcement learning in infinite‐horizon settings

Chengchun Shi, Sheng Zhang, Wenbin Lu and Rui Song

Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 3, 765-793

Abstract: Reinforcement learning is a general technique that allows an agent to learn an optimal policy and interact with an environment in sequential decision‐making problems. The goodness of a policy is measured by its value function starting from some initial state. The focus of this paper was to construct confidence intervals (CIs) for a policy’s value in infinite horizon settings where the number of decision points diverges to infinity. We propose to model the action‐value state function (Q‐function) associated with a policy based on series/sieve method to derive its confidence interval. When the target policy depends on the observed data as well, we propose a SequentiAl Value Evaluation (SAVE) method to recursively update the estimated policy and its value estimator. As long as either the number of trajectories or the number of decision points diverges to infinity, we show that the proposed CI achieves nominal coverage even in cases where the optimal policy is not unique. Simulation studies are conducted to back up our theoretical findings. We apply the proposed method to a dataset from mobile health studies and find that reinforcement learning algorithms could help improve patient’s health status. A Python implementation of the proposed procedure is available at https://github.com/shengzhang37/SAVE.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/rssb.12465

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:3:p:765-793

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:84:y:2022:i:3:p:765-793