On functional processes with multiple discontinuities
Jialiang Li,
Yaguang Li and
Tailen Hsing
Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 3, 933-972
Abstract:
We consider the problem of estimating multiple change points for a functional data process. There are numerous examples in science and finance in which the process of interest may be subject to some sudden changes in the mean. The process data that are not in a close vicinity of any change point can be analysed by the usual nonparametric smoothing methods. However, the data close to change points and contain the most pertinent information of structural breaks need to be handled with special care. This paper considers a half‐kernel approach that addresses the inference of the total number, locations and jump sizes of the changes. Convergence rates and asymptotic distributional results for the proposed procedures are thoroughly investigated. Simulations are conducted to examine the performance of the approach, and a number of real data sets are analysed to provide an illustration.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssb.12493
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:3:p:933-972
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().