EconPapers    
Economics at your fingertips  
 

Segmenting time series via self‐normalisation

Zifeng Zhao, Feiyu Jiang and Xiaofeng Shao

Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 5, 1699-1725

Abstract: We propose a novel and unified framework for change‐point estimation in multivariate time series. The proposed method is fully non‐parametric, robust to temporal dependence and avoids the demanding consistent estimation of long‐run variance. One salient and distinct feature of the proposed method is its versatility, where it allows change‐point detection for a broad class of parameters (such as mean, variance, correlation and quantile) in a unified fashion. At the core of our method, we couple the self‐normalisation‐ (SN) based tests with a novel nested local‐window segmentation algorithm, which seems new in the growing literature of change‐point analysis. Due to the presence of an inconsistent long‐run variance estimator in the SN test, non‐standard theoretical arguments are further developed to derive the consistency and convergence rate of the proposed SN‐based change‐point detection method. Extensive numerical experiments and relevant real data analysis are conducted to illustrate the effectiveness and broad applicability of our proposed method in comparison with state‐of‐the‐art approaches in the literature.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssb.12552

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:5:p:1699-1725

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:jorssb:v:84:y:2022:i:5:p:1699-1725