Estimation of viral infection and replication in cells by using convolution models
Dean Follmann,
Jing Qin and
Yo Hoshino
Journal of the Royal Statistical Society Series C, 2010, vol. 59, issue 3, 423-435
Abstract:
Summary. In some assays, a diluted suspension of infected cells is plated onto multiple wells. In each well the number of genome copies of virus, Y, is recorded, but interest focuses on the number of infected cells, X, and the number of genome copies in the infected cells, W1,…,WX. The statistical problem is to recover the distribution or at least moments of X and W on the basis of the convolution Y. We evaluate various parametric statistical models for this ‘mixture’‐ type problem and settle on a flexible robust approach where X follows a two‐component Poisson mixture model and W is a shifted negative binomial distribution. Data analysis and simulations reveal that the means and occasionally variances of X and W can be reliably captured by the model proposed. We also identify the importance of selecting an appropriate dilution for a reliable assay.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2009.00697.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:59:y:2010:i:3:p:423-435
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().