EconPapers    
Economics at your fingertips  
 

Robust Estimation in Vector Autoregressive Moving‐Average Models

Marta Garcia Ben, Elena J. Martinez and Victor J. Yohai

Journal of Time Series Analysis, 1999, vol. 20, issue 4, 381-399

Abstract: Bustos and Yohai proposed a class of robust estimates for autoregressive moving‐average (ARMA) models based on residual autocovariances (RA estimates). In this paper an affine equivariant generalization of the RA estimates for vector ARMA processes is given. These estimates are asymptotically normal and, when the innovations have an elliptical distribution, their asymptotic covariance matrix differs only by a scalar factor from the covariance matrix corresponding to the maximum likelihood estimate. A Monte Carlo study confirms that the RA estimates are efficient under normal errors and robust when the sample contains outliers. A robust multivariate goodness‐of‐fit test based on the RA estimates is also obtained.

Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/1467-9892.00144

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:20:y:1999:i:4:p:381-399

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:20:y:1999:i:4:p:381-399