Local Likelihood for non‐parametric ARCH(1) models
Francesco Audrino
Journal of Time Series Analysis, 2005, vol. 26, issue 2, 251-278
Abstract:
Abstract. We propose a non‐parametric local likelihood estimator for the log‐transformed autoregressive conditional heteroscedastic (ARCH) (1) model. Our non‐parametric estimator is constructed within the likelihood framework for non‐Gaussian observations: it is different from standard kernel regression smoothing, where the innovations are assumed to be normally distributed. We derive consistency and asymptotic normality for our estimators and show, by a simulation experiment and some real‐data examples, that the local likelihood estimator has better predictive potential than classical local regression. A possible extension of the estimation procedure to more general multiplicative ARCH(p) models with p > 1 predictor variables is also described.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2005.00400.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:26:y:2005:i:2:p:251-278
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().