Simultaneous inference for autocovariances based on autoregressive sieve bootstrap
Alexander Braumann,
Jens‐Peter Kreiss and
Marco Meyer
Journal of Time Series Analysis, 2021, vol. 42, issue 5-6, 534-553
Abstract:
In this article, maximum deviations of sample autocovariances and autocorrelations from their theoretical counterparts over an increasing set of lags are considered. The asymptotic distribution of such statistics for physically dependent stationary time series, which is of Gumbel type, only depends on second‐order properties of the underlying time series. Since the autoregressive sieve bootstrap is able to mimic the second‐order structure asymptotically correctly it is an obvious problem whether the autoregressive (AR) sieve bootstrap, which has been shown to work for a number of relevant statistics in time series analysis, asymptotically works for maximum deviations of autocovariances and autocorrelations as well. This article shows that the question can be answered positively. Moreover, potential applications including spectral density estimation and an investigation of finite sample properties of the AR‐sieve bootstrap proposal by simulation are given.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12604
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:42:y:2021:i:5-6:p:534-553
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().