Consistent autoregressive spectral estimates: Nonlinear time series and large autocovariance matrices
Jiang Wang and
Dimitris N. Politis
Journal of Time Series Analysis, 2021, vol. 42, issue 5-6, 580-596
Abstract:
We consider the problem of using an autoregressive (AR) approximation to estimate the spectral density function and the n × n autocovariance matrix based on stationary data X1, … , Xn. The consistency of the autoregressive spectral density estimator has been proven since the 1970s under a linearity assumption. We extend these ideas to the nonlinear setting, and give an application to estimating the n × n autocovariance matrix. Under mild assumptions on the underlying dependence structure and the order p of the fitted AR(p) model, we are able to show that the autoregressive spectral estimate and the associated AR‐based autocovariance matrix estimator are consistent. We are also able to establish an explicit bound on the rate of convergence of the proposed estimators.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12580
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:42:y:2021:i:5-6:p:580-596
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().