Indirect inference for time series using the empirical characteristic function and control variates
Richard A. Davis,
Thiago do Rêgo Sousa and
Claudia Klüppelberg
Journal of Time Series Analysis, 2021, vol. 42, issue 5-6, 653-684
Abstract:
We estimate the parameter of a stationary time series process by minimizing the integrated weighted mean squared error between the empirical and simulated characteristic function, when the true characteristic functions cannot be explicitly computed. Motivated by Indirect Inference, we use a Monte Carlo approximation of the characteristic function based on i.i.d. simulated blocks. As a classical variance reduction technique, we propose the use of control variates for reducing the variance of this Monte Carlo approximation. These two approximations yield two new estimators that are applicable to a large class of time series processes. We show consistency and asymptotic normality of the parameter estimators under strong mixing, moment conditions, and smoothness of the simulated blocks with respect to its parameter. In a simulation study we show the good performance of these new simulation based estimators, and the superiority of the control variates based estimator for Poisson driven time series of counts.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12582
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:42:y:2021:i:5-6:p:653-684
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().