On buffered moving average models
Yipeng Zhuang,
Dong Li,
Philip L. H. Yu and
Wai Keung Li
Journal of Time Series Analysis, 2025, vol. 46, issue 4, 599-622
Abstract:
There has been growing interest in extending the popular threshold time series models to include a buffer zone for regime transition. However, almost all attention has been on buffered autoregressive models. Note that the classical moving average (MA) model plays an equally important role as the autoregressive model in classical time series analysis. It is therefore natural to extend our investigation to the buffered MA (BMA) model. We focus on the first‐order BMA model while extending to more general MA model should be direct in principle. The proposed model shares the piecewise linear structure of the threshold model, but has a more flexible regime switching mechanism. Its probabilistic structure is studied to some extent. A nonlinear least squares estimation procedure is proposed. Under some standard regularity conditions, the estimator is strongly consistent and the estimator of the coefficients is asymptotically normal when the parameter of the boundary of the buffer zone is known. A portmanteau goodness‐of‐fit test is derived. Simulation results and empirical examples are carried out and lend further support to the usefulness of the BMA model and the asymptotic results.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12778
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:46:y:2025:i:4:p:599-622
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().